

European Research Conference: Buildings Europäische Forschungskonferenz: Gebäude

Fault Diagnosis and Adaptive Control of VAV Dampers in a Multizone Building

Tejaswinee Darure

University of Lorraine

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 608981.

Energy in TIME

- Energy IN TIME is a Large-scale integrating project within the 7th Framework Programme FP7-NMP, Subprogramme EeB.NMP.2013-4
- The main objective is to reduce the energy consumption and cost in the operational stage of buildings
- Development of an innovative simulation-based control technique with the overarching objective of automating the generation of optimal operational plans tailored to the actual building and users requirements

UL contribution

- Design of fault detection and diagnosis techniques (WP4)
- Design of adaptive control modules for fault at component and system level (WP3)

Issues and Objectives

Objectives

- Developments in fault detection and diagnosis algorithms for system and equipment level faults
- Reconfiguration of control strategies to adapt fault recovering the functionality of HVAC system and its demonstration on building simulator

Issues

- The mathematical modeling of overall building system
- The economic model predictive control optimization problem for large scale building
- Fault adaptive control through integration of fault detection and diagnosis algorithms with predictive control

Benchmark Building description

Building Model Development in SIMBAD

- SIMBAD →HVAC toolbox for the MATLAB/SIMULINK
- Flexibility in simulation with available weather data (for Nancy)
- Platform for application of different control strategies
 - Every zone contains:
 i) Temperature sensor

ii) VAV box

Air Handling Unit consists:
 i) Mixer
 ii) Heating Coil
 iii) Supply fan

Fault Detection and Diagnosis

- Dedicated bank of unknown input residual generators is designed based on the linearized thermal model of the building
- Disturbances are considered to be known
- Residuals are generated (residual : the difference between actual and computed signal)

- Each residual generator is driven by all outputs and all inputs except one input.
- **Residual** When all sensors are fault-free and fault occurs in i^{th} zone-actuator, residual follows isolation logic as $|r_i(k)| \ge Threshold_i$

 $r_i(k)$ represents the residual for i^{th} zone actuator

Simulation example

European Research Conference: Buildings

When absolute value of residual is greater than threshold, the fault is detected and from the value of residual, diagnosis is followed.

Figure: Detection of damper stuck

European Research Conference: Buildings

Fault Tolerant Control

f _{min}	0 kg/s	T _{samin}	20°C	y _{min}	19°C
f _{max}	0.4 kg/s	T _{samax}	40°C	y _{max}	25°C

Q and **R** are weights* Horizon is of one Day.

ref is desired temperature setpoints *u* is control input vector as $[f_{sai} \ T_{sa}(k)]^T$ *y* is output vector as $[\ T_{zi}(k)]^T$ *f_{min}* is minimum flow from VAV box *f_{max}* is maximum flow from VAV box *T_{samin}* is minimum supply air temperature AHU can provide. *T_{samax}* is maximum supply air temperature AHU can provide. *y_{min}* is lower temperature limit for comfort zone *y_{max}* is upper temperature limit for comfort zone

FTC Contd.

Figure: FDD and FTC structure

- FDD module detects and diagnose fault has occurred at zone-I where the stuck is at 52% allowing 0.21 kg/s fixed supply air flow.
- Online modification is done of the constraints on the decision variables under damper stuck failures occurrence.
- This information is updated in the MPC of the zone level temperature controller.
- Constraints are switched, which allows calculation of supply air temperature at fixed stuck supply air flow to maintain zone -1 temperature at 22°C

Simulation example- damper stuck case

World Sustainable Energy Days 1 - 3 March 2017, Wels/Austria

European Research Conference: Buildings

References

- □ Lennart Ljung, *System Identification : Theory for users* Prentice Hall, 2003.
- □ J. B. Rawlings and D. Q. Mayne, *Model Predictive Control : Theory and Design* Nob Hill Pub., Jan 1, 2009
- J.M. Maciejowski, *Predictive Control with Constraints*, Prentice Hall, 2002.
- □ Petru-Daniel Morosan,Romain Bourdais *Building temperature regulation using a distributed model predictive control* Energy and Buildings 42,(1445-1452),2010
- □ Matt Wallace and Ryan McBride, *Energy efficient model predictive building temperature control* Chemical Engineering Science 69,(45-58),2012
- Wei Liang, Rebecca Quinte, MPC control for improving energy efficiency of a building air handler for multi-zone VAVs, Building and Environment 92,(256-268),2015
- □ Yudong MA, Anthony Kelman, *Predictive Control for Energy Efficient Buildings* with Thermal Storage, IEEE Control Systems Magazine, February 2012

Thank you www.energyintime.eu

